![]() |
‹ Wednesday, May 28, 2025 |
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
|
9:30 - 9:45 (15min)
Introduction of the day
![]() Mathieu Vrac
›9:45 (45min)
Keynote 4 : Empirical run-time bias corrections in an atmospheric GCM
Gerhard Krinner, Institute of Environmental Geosciences - CNRS › Amphitheater Schlumberger
9:45 - 10:30 (45min)
Keynote 4 : Empirical run-time bias corrections in an atmospheric GCM
![]() Gerhard Krinner, Institute of Environmental Geosciences - CNRS
›10:30 (25min)
› Amphitheater Schlumberger
10:30 - 10:55 (25min)
Climate Models / Forecasts / Ensemble / Tools
![]() Soulivanh Thao
› Multivariate bias correction of ensembles: preserving internal variability of multivariate properties
- Bastien Francois, Royal Netherlands Meteorological Institute (KNMI), Research and Development Weather and Climate (RDWK)
10:30-10:55 (25min)
10:55 - 11:15 (20min)
Coffee break
![]() ›11:15 (1h15)
› Amphitheater Schlumberger
11:15 - 12:30 (1h15)
Climate Models / Forecasts / Ensemble / Tools
![]() Soulivanh Thao
› Re-calibration of decadal ensemble predictions
- Henning Rust, Freie Universität Berlin
11:15-11:40 (25min)
› Clim4health: a new R package to harmonize climate datasets for health impact studies
- Emily Ball, Barcelona Supercomputing Center (Centro Nacional de Supercomputacion)
11:40-12:05 (25min)
› Leveraging bias-corrected seasonal forecasts for agro-meteorological monitoring and crop yield forecasting
- Henin Riccardo, European Commission - Joint Research Center
12:05-12:30 (25min)
12:30 - 14:00 (1h30)
Lunch
![]() 14:00 - 15:15 (1h15)
Machine learning
![]() Grégoire Mariéthoz
› Adjusting spatial dependence of climate model outputs with cycle-consistent adversarial networks
- Bastien François, Royal Netherlands Meteorological Institute - Soulivanh THAO, Extrèmes : Statistiques, Impacts et Régionalisation
14:00-14:25 (25min)
› Statistical and machine learning methods to reconstruct solar irradiance data at high temporal resolution from climate projections
- Rosemary Eade, IPSL/CNRS
14:25-14:50 (25min)
› A temporal stochastic bias correction using a machine learning attention model
- Omer Nivron, University of Cambridge
14:50-15:15 (25min)
15:15 - 15:45 (30min)
Coffee break
![]() 15:45 - 16:35 (50min)
Machine learning
![]() Grégoire Mariéthoz
› ML-based bias correction of precipitation data for enhanced climate adaptation in Morocco
- Zineb Errachdi, International Water Research Institute, Mohammed VI Polytechnic University, College of Sustainable Agriculture and Environmental Sciences
15:45-16:10 (25min)
› Improving the Robustness of Super-Resolution Algorithms to Extreme Events and Climate Change
- Tom Beucler, University of Lausanne
16:10-16:35 (25min)
›16:35 (15min)
› Amphitheater Schlumberger
16:35 - 16:50 (15min)
Discussions, conclusion and wrap-up of the workshop
![]() Mathieu Vrac
|
Session | Speech | Logistics | Break | Tour |