› Bias correction of long-term climate projections over the French overseas territories – Case study of Mayotte - Loïs Pourchet, Météo-France
15:00-15:25 (25min)
› BADJAM Assessing the impact on crop modelling of multi- and uni-variate climate model bias adjustments - Stefano Galmarini, Joint Research Center, Ispra, Italy
15:25-15:50 (25min)
› Assessing multivariate bias corrections of climate simulations on various impact models under climate change - Denis Allard, INRAE
16:20-16:45 (25min)
› How does the choice of bias adjustment strategy affect ensemble projections of high-flows? - Paul C. Astagneau, WSL Institute for Snow and Avalanche Research SLF [Davos], Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland
16:45-17:10 (25min)
› High-Resolution Downscaled CMIP6 Projections of Key Climate Variables for Senegal: Implications for Future Climate Scenarios - Asse Mbengue, National Agency for Civil Aviation and Meteorology
17:10-17:35 (25min)
› Intercomparison of bias-adjustment methods for estimating multivariate heat stress conditions in southern South America - Ana Casanueva, Dept. Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, España - Grupo de Meteorología y Computación, Unidad Asociada al CSIC, Santander, Spain
17:35-18:00 (25min)
› Seasonal bias-correction of daily precipitation over France using a stitch model designed for robust extremes representation - Philippe EAR, Hydroclimat, Laboratoire Jean Alexandre Dieudonné
11:15-11:40 (25min)
› Distribution-based pooling for combination and multi-model bias correction of climate simulations - Mathieu Vrac, Laboratoire des Sciences du Climat et de l'Environnement
11:40-12:05 (25min)
› What is Expected for the (non-) Extremes of a Bias Correction ? - Yoann Robin, Extrèmes : Statistiques, Impacts et Régionalisation, LSCE
12:05-12:30 (25min)
› Ensuring spatial consistency in multivariate bias correction for climate projections with hierarchical vine copulas - Theresa Meier, University of Applied Sciences and Arts Western Switzerland (HES-SO), Geneva, Faculty of Business and Economics (HEC), University of Lausanne, Expertise Center for Climate Extremes (ECCE), Faculty of Business and Economics (HEC) - Faculty of Geosciences and Environment, University of Lausanne
13:45-14:10 (25min)
› A Multivariate Graph Cut Framework for Combining Global Climate Models - Lucas Schmutz, Institute of Earth Surface Dynamics (GAIA lab), University of Lausanne
14:10-14:35 (25min)
› Aggregating the tail distributions in multi-model ensemble outputs for bias correction - Emilia Siviero, Dipartimento di Scienze Ambientali, Informatica e Statistica [Venezia]
16:25-16:50 (25min)
› Can bias correction improve the transferability of machine learning approaches from reanalysis to climate models data? –An application for tropical cyclone tracking– - Pradeebane Vaittinada Ayar, Laboratoire des Sciences du Climat et de l'Environnement (LSCE)
16:50-17:15 (25min)
› Multivariate bias correction of ensembles: preserving internal variability of multivariate properties - Bastien Francois, Royal Netherlands Meteorological Institute (KNMI), Research and Development Weather and Climate (RDWK)
10:30-10:55 (25min)
› Re-calibration of decadal ensemble predictions - Henning Rust, Freie Universität Berlin
11:15-11:40 (25min)
› Clim4health: a new R package to harmonize climate datasets for health impact studies - Emily Ball, Barcelona Supercomputing Center (Centro Nacional de Supercomputacion)
11:40-12:05 (25min)
› Leveraging bias-corrected seasonal forecasts for agro-meteorological monitoring and crop yield forecasting - Henin Riccardo, European Commission - Joint Research Center
12:05-12:30 (25min)
› Adjusting spatial dependence of climate model outputs with cycle-consistent adversarial networks - Bastien François, Royal Netherlands Meteorological Institute - Soulivanh THAO, Extrèmes : Statistiques, Impacts et Régionalisation
14:00-14:25 (25min)
› Statistical and machine learning methods to reconstruct solar irradiance data at high temporal resolution from climate projections - Rosemary Eade, IPSL/CNRS
14:25-14:50 (25min)
› A temporal stochastic bias correction using a machine learning attention model - Omer Nivron, University of Cambridge
14:50-15:15 (25min)
› ML-based bias correction of precipitation data for enhanced climate adaptation in Morocco - Zineb Errachdi, International Water Research Institute, Mohammed VI Polytechnic University, College of Sustainable Agriculture and Environmental Sciences
15:45-16:10 (25min)
› Improving the Robustness of Super-Resolution Algorithms to Extreme Events and Climate Change - Tom Beucler, University of Lausanne
16:10-16:35 (25min)